Effect of combined triangularity and ellipticity on the stability limit of the ideal internal kink mode in a tokamak

H. G. Erikssona) and C. Wahlberg

Department of Astronomy and Space Physics, EURATOM/NFR Fusion Association, P.O. Box 515, Uppsala University, SE-751 20 Uppsala, Sweden
a)Permanent address: Mälardalen University, SE-721 23 Västerås, Sweden

The sawtooth period and amplitude in tokamaks is known to depend strongly on the shape of the $q = 1$ surface [1]. Furthermore, this shape dependence seems to correlate, at least to some extent, with the stability limit of the ideal, internal kink mode. The strong dependence on shaping, especially on ellipticity e and triangularity δ, of the stability limit of this mode is well-known from numerical computations [2]. The strongly destabilizing effect of ellipticity alone, especially at small $\Delta q = 1 - q_0$, has recently also been given an analytical explanation by including terms of order $\varepsilon^2 e$, where ε is the inverse aspect ratio, in a perturbation expansion of the potential energy δW of the ideal $m = n = 1$ mode [3]. In the case of a parabolic current profile near the axis, and for small values of Δq and r_1, a normalized form of this contribution to δW is given by [3]

$$\delta \hat{W}^{(e\varepsilon)} = -\frac{3}{4}(\kappa_1 - 1)\beta_{p,1} + \frac{1}{2} \Delta q(\kappa_1 - 1)\left(13\beta_{p,1}^2 - \frac{1}{4}\beta_{p,1} - 1\right) + O(\Delta q^2). \quad (1)$$

Here, κ_1 denotes the elongation and $\beta_{p,1}$ the poloidal beta value at the $q = 1$ radius $r = r_1$. The normalization of δW in Eq. (1) is such that the usual Bussac [4] expression for the potential energy, using the same normalization, current profile, and Δq-expansion, reads

$$\delta \hat{W}^{(e\varepsilon)} = \delta \hat{W}_{\text{Bussac}} = \Delta q \left(\frac{13}{48} - 3\beta_{p,1}^2\right) + O(\Delta q^2). \quad (2)$$

The stability condition for the ideal, internal kink mode in a toroidal plasma with circular cross section and small $q = 1$ radius is then given by the well-known pressure limit $\beta_{p,1} < \beta_{p,1}^{\text{crit}} = (13)^{1/2} / 12 \approx 0.3$. For a plasma with elliptical cross section, however, it is apparent that, due to the destabilizing (for $\kappa_1 > 1$) Δq-independent term in $\delta \hat{W}^{(e\varepsilon)}$, the stability condition based on both of the terms above leads to much smaller values of $\beta_{p,1}^{\text{crit}}$. See Ref. [3] for more details on this destabilizing effect of ellipticity alone.

Geometrically, the expansion parameter ε represents a $\cos \theta$ perturbation (radial shift) of the flux surfaces, whereas the ellipticity parameter $e = (\kappa - 1)/2$ represents a $\cos 2\theta$ shape...
perturbation of the same flux surfaces. It turns out that contributions to \(\delta W \) to various orders \(\epsilon^{\mu}e^{\nu} \) are found for integers \(\mu \) and \(\nu \) such that \(\langle (\cos\theta)^{\mu}(\cos2\theta)^{\nu} \rangle \neq 0 \), where \(\langle \rangle \) denotes averaging over the interval \(0 \leq \theta \leq 2\pi \). Thus, the leading-order terms in \(\delta W \) are of order \(\epsilon^2 \) (Bussac term) and \(\epsilon^2 \). The latter term is, however, very small for small \(\Delta q \) [5], and is for this reason omitted here. The next-order term is given by the \(\epsilon^2 e \)-term in Eq. (1), followed by \(\epsilon^2 e^2 \), \(\epsilon^2 e^3 \), \(\epsilon^2 e^4 \), \(\epsilon^2 e^5 \), etc., which are all neglected here.

Including also triangularity \(\delta \) in the equilibrium, we similarly expect contributions to \(\delta W \) to appear to orders \(\epsilon^{\mu}e^{\nu}\delta^{\lambda} \), where \(\langle (\cos\theta)^{\mu}(\cos2\theta)^{\nu}(\cos3\theta)^{\lambda} \rangle \neq 0 \). Thus, apart from the term \(\delta^2 \), which we neglect here for the same reason as \(\epsilon^2 \) was neglected above [5], the leading-order term in this category of terms is given by \(\epsilon \delta e \). Provided that \(\delta \) is at least of the same order as \(\epsilon \), this term is potentially of the same importance as the \(\epsilon^2 e \) term in Eq. (1). In this paper we present a recent computer algebra calculation of this term [6], using similar methods as in Ref. [3].

Compared with the pure ellipticity problem analyzed in Ref. [3], the volume of the present calculation is approximately a factor two larger. For instance, the number of non-vanishing poloidal side-bands involved in the present problem is ten \((m = -2, -1, 2, 3, 4 \text{ to orders } \epsilon, e, \epsilon, e \text{ and } \epsilon e, \text{ respectively, }) \), as compared with the six poloidal side-bands involved in the analysis in Ref. [3].

Using the same normalization, current profile, and \(\Delta q \)-expansion as in Eqs. (1) and (2), it is shown in Ref. [6] that

\[
\delta \hat{W}^{(oe)} = \frac{3(\kappa_1 - 1)\beta_{p,1}\delta_1}{2\epsilon_1} + \frac{\Delta q(\kappa_1 - 1)\delta_1}{12\epsilon_1} \left(4\beta_{p,1} - 7 \right) + O(\Delta q^2),
\]

where \(\delta_1 \) and \(\epsilon_1 \) denote the triangularity and inverse aspect ratio, respectively, of the \(q = 1 \) surface. We see that, for \(\kappa_1 > 1 \), the leading-order triangularity effect is stabilizing for positive \(\delta_1 \) and destabilizing for negative \(\delta_1 \), whereas the second term shows the opposite behaviour, provided that \(\beta_{p,1} < 7/4 \). Adding \(\delta \hat{W}^{(e)} \) and \(\delta \hat{W}^{(oe)} \) in Eqs. (1) and (3), respectively, we obtain the leading-order potential energy for the ideal, internal kink mode in the form

\[
\delta \hat{W}^{(e)} + \delta \hat{W}^{(oe)} = -\frac{3}{4}(\kappa_1 - 1)\beta_{p,1} \left(1 - \frac{2\delta_1}{\epsilon_1} \right) + O(\Delta q).
\]

Thus, for sufficiently large triangularity, \(\delta_1 > \epsilon_1/2 \), the stabilizing, combined triangle-ellipticity effect in Eq. (3) overcomes the destabilizing ellipticity effect in Eq. (1) and, in total, positive ellipticity turns into a stabilizing rather than a destabilizing effect. This dependene on ellipticity and triangularity is exactly the same as in the corresponding Mercier criterion, and therefore not too surprising. See, e.g., Ref. [2], or Eq. (6) in Ref. [1].

In the figures below we illustrate the stability boundaries \(\delta \hat{W} = 0 \), with \(\delta \hat{W} = \delta \hat{W}^{(e)} + \delta \hat{W}^{(e)} + \delta \hat{W}^{(oe)} \), including the \(O(\Delta q) \)-terms in Eqs. (1)-(3), for various combinations of the parameters involved. Figure 1a shows the critical \(\beta_{p,1} \) as a function of \(\kappa_1 \) for \(\Delta q = 0.01, 0.05, \ldots \)
0.1 and 0.2 and for $\delta_l/\varepsilon_1 = 0.4$. Thus, the triangularity is slightly below the limit ($\varepsilon_l/2$) above which the leading-order ellipticity term in Eq. (3) becomes stabilizing. Consequently, $\beta_{p,1}^{cu}$ is smaller than 0.3 for these parameters. Figure 1b shows the same type of diagram, but with $\delta_l/\varepsilon_1 = 0.6$, and the critical beta values accordingly larger than 0.3. In the case $\Delta q = 0.2$, however, the destabilizing triangularity effect in the second term in Eq. (3) can be seen. Figure 1c shows the stability boundary at the critical value $\delta_l/\varepsilon_1 = 0.5$. This stability boundary is independent of Δq in the present approximation.

These stability boundaries are shown in a couple of other ways in Figs. 2 and 3 below. In Fig. 2a the critical $\beta_{p,1}$ is shown as a function of κ_1 for $\Delta q = 0.05$ and for different δ_l/ε_1. The improvement of stability as δ_l/ε_1 goes from 0 to 0.4 is seen to be moderate for all values of κ_1, whereas a dramatic improvement occurs when δ_l/ε_1 increases from 0.4 to 0.6. This effect is also illustrated in Fig. 2b which shows the critical $\beta_{p,1}$ as a function of δ_l/ε_1 for $\kappa_1 = 1.2$ and $\Delta q = 0.01, 0.05, 0.1$ and 0.2. For sufficiently small values of Δq, there is a dramatic improvement of the stability when δ_l/ε_1 becomes larger than 0.5, as predicted by Eq. (4).
In Fig. 5 in Ref. [1], the stability threshold from the Mercier criterion is plotted as the maximum allowable elongation κ_1 for stability vs the triangularity δ_1. In Figs. 3a,b below we illustrate the stability regions of the internal kink mode, and the stabilizing effect of triangularity, in a similar way. For instance, Fig. 3a shows the κ_1-limit as a function of δ_1/ϵ_1 for $\Delta q = 0.05$ and for different values of $\beta_{p,1}$. The regions of stability are below the solid lines (for all $\beta_{p,1}$), and above the dashed line (for $\beta_{p,1} = 0.4$ only). The diagram in Fig. 3b is similar, but here $\beta_{p,1}$ is fixed ($= 0.1$) whereas Δq varies. Also here, the regions of stability are below the solid lines and above the dashed line (for $\Delta q = 0.01$).

In conclusion, we have investigated the effects of a combined triangular and elliptical plasma cross-section on the stability of the ideal, internal kink mode in a tokamak. The work extends the results of a preceding paper [3], where the effect of ellipticity alone was investigated. The full details of the present work can be found in a forthcoming paper [6]. The main result is an expression for the potential energy of the ideal, internal kink mode to order $\epsilon \epsilon_1$, given (in normalized form) by Eq. (3) in the case of a parabolic current profile near the axis, and for small values of Δq. When this contribution to the potential energy is added to the corresponding ellipticity term in δW, derived in Ref. [3], the combined expression, Eq. (4), assumes a similar form as the corresponding term in the Mercier criterion [2]. Thus, similarly to Mercier stability of shaped tokamaks we find in the case of the internal kink mode that, whereas ellipticity alone is destabilizing, a combination of ellipticity and positive triangularity is stabilizing. Both experimental observations of shaping effects on the sawtooth stability [1] and numerical computations [2] show similar dependences on ellipticity and triangularity.

References